Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 965]
|
|
Сложность: 3+ Классы: 9,10
|
Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений (x – a)(x – b) = x – c, (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b имеют решение.
|
|
Сложность: 3+ Классы: 9,10,11
|
На координатной плоскости изображен график функции y = ax² + bx + c (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции y = cx² + 2bx + a.
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) имеет два различных корня. Оказалось, что для любых чисел a и b верно неравенство f(a² + b²) ≥ f(2ab).
Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.
|
|
Сложность: 3+ Классы: 10,11
|
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?
|
|
Сложность: 3+ Классы: 9,10,11
|
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 965]