ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 2393]      



Задача 110389

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды с боковым ребром b и высотой h .
Прислать комментарий     Решение


Задача 110390

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с боковым ребром b и высотой h .
Прислать комментарий     Решение


Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Задача 35618

Темы:   [ Правильная пирамида ]
[ Ортогональная проекция (прочее) ]
Сложность: 2+
Классы: 10,11

Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
Может ли угол грани при вершине пирамиды равняться 100°?

Прислать комментарий     Решение

Задача 77945

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 2+
Классы: 10,11

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Прислать комментарий     Решение


Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .