ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1284]      



Задача 52399

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

AM — биссектриса треугольника ABC. Точка D принадлежит стороне AC, причём $ \angle$DMC = $ \angle$BAC. Докажите, что BM = MD.

Прислать комментарий     Решение


Задача 52413

Темы:   [ Отношение площадей подобных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Отрезок AB есть диаметр круга, а точка C лежит вне этого круга. Отрезки AC и BC пересекаются с окружностью в точках D и M соответственно. Найдите угол CBD, если площади треугольников DCM и ACB относятся как 1:4.

Прислать комментарий     Решение


Задача 52480

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.

Прислать комментарий     Решение


Задача 52573

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

AB — диаметр окружности; C, D, E — точки на одной полуокружности ACDEB. На диаметре AB взяты: точка F так, что $ \angle$CFA = $ \angle$DFB, и точка G так, что $ \angle$DGA = $ \angle$EGB. Найдите $ \angle$FDG, если дуга AC равна 60o, а дуга BE равна 20o.

Прислать комментарий     Решение


Задача 53058

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Окружность, диаметр которой равен $ \sqrt{10}$, проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB = 1. Найдите все возможные значения, которые может принимать длина стороны BC.

Прислать комментарий     Решение


Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1284]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .