|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1284]
AM — биссектриса треугольника ABC. Точка D принадлежит
стороне AC, причём
Отрезок AB есть диаметр круга, а точка C лежит вне этого круга. Отрезки AC и BC пересекаются с окружностью в точках D и M соответственно. Найдите угол CBD, если площади треугольников DCM и ACB относятся как 1:4.
Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.
AB — диаметр окружности; C, D, E — точки на одной
полуокружности ACDEB. На диаметре AB взяты: точка F так, что
Окружность, диаметр которой равен
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1284] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|