ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 114]      



Задача 64882

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Окружности ω1 и ω2 касаются друг друга внешним образом в точке P. Из точки A окружности ω2, не лежащей на линии центров окружностей, проведены касательные AB, AC к ω1. Прямые BP, CP вторично пересекают ω2 в точках E и F. Докажите, что прямая EF, касательная к ω2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64924

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Автор: Нилов Ф.

В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.

Прислать комментарий     Решение

Задача 66245

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 4+
Классы: 9,10,11

В окружность вписан шестиугольник ABCDEF.  K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Докажите, что если три из этих точек лежат на одной прямой, то и четвёртая точка лежит на этой прямой.

Прислать комментарий     Решение

Задача 66274

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Проективные преобразования плоскости ]
[ Применение проективных преобразований прямой в задачах на построение ]
[ Инверсия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 9,10

Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.

Прислать комментарий     Решение

Задача 66320

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 114]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .