Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 114]
|
|
Сложность: 4+ Классы: 10,11
|
Окружности ω1 и ω2 касаются друг друга внешним образом в точке P. Из точки A окружности ω2, не лежащей на линии центров окружностей, проведены касательные AB, AC к ω1. Прямые BP, CP вторично пересекают ω2 в точках E и F. Докажите, что прямая EF, касательная к ω2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 10,11
|
В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.
|
|
Сложность: 4+ Классы: 9,10,11
|
В окружность вписан шестиугольник ABCDEF. K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Докажите, что если три из этих точек лежат на одной прямой, то и четвёртая точка лежит на этой прямой.
|
|
Сложность: 4+ Классы: 9,10
|
Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.
|
|
Сложность: 4+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 114]