ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 114]      



Задача 98601

Темы:   [ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 10,11

Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
  а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
  б) прямые l1, l2 и K имеют общую точку.

Прислать комментарий     Решение

Задача 65248

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Четыре точки, лежащие на одной окружности ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Дидин М.

В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что  QMAC  и  PMAB.  Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что  BH = CX.

Прислать комментарий     Решение

Задача 66246

Темы:   [ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радикальная ось ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть AL и AK – внутренняя и внешняя биссектрисы треугольника ABC,  P – точка пересечения касательных к описанной окружности в точках B и C. Перпендикуляр, восставленный из точки L к BC, пересекает прямую AP в точке Q. Докажите, что Q лежит на средней линии треугольника LKP.

Прислать комментарий     Решение

Задача 65024

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Птолемея ]
[ Теоремы Чевы и Менелая ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Шестиугольник ABCDEF вписан в окружность. Известно, что  AB·CF = 2BC·FACD·EB = 2DE·BCEF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65809

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанный угол, опирающийся на диаметр ]
[ Центр поворотной гомотетии ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 114]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .