Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 92]
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что для всех
x(0
;)
при
n>m , где
n,m – натуральные, справедливо неравенство
2| sinn x- cosn x| 3| sinm x- cosm x|;
|
|
Сложность: 5 Классы: 9,10,11
|
Вычислите квадратный корень из числа 0,111...111
(100 единиц) с точностью до
а) 100; б) 101; в)* 200 знаков после запятой.
|
|
Сложность: 5 Классы: 10,11
|
Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько
прыжков оказаться на расстоянии меньше 1/100 от точки a.
|
|
Сложность: 5+ Классы: 10,11
|
На доске написаны три функции: f1(x) = x + 1/x, f2(x) = x², f3(x) = (x – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
Докажите, что если стереть с доски любую из функций f1, f2, f3, то получить 1/x невозможно.
|
|
Сложность: 6 Классы: 10,11
|
Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке [0; 2π) может иметь
уравнение вида
sin(k0x)+A1·sin(k1x)
+A2·sin(k2x)=0
где
A1,
A2 – вещественные числа.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 92]