Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 92]
[Неравенство Юнга]
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны рациональные положительные p, q, причём 1/p + 1/q = 1. Докажите, что для положительных a и b выполняется неравенство ab ≤ ap/p + bq/q.
[Неравенство Гёльдера]
|
|
Сложность: 4+ Классы: 10,11
|
Пусть p и q – положительные числа, причём
1/p + 1/q = 1. Докажите, что
Значения переменных считаются положительными.
|
|
Сложность: 4+ Классы: 10,11
|
Решите уравнение
в положительных числах.
|
|
Сложность: 4+ Классы: 10,11
|
Докажите, что при всех
x ,
0
<x<π /3
, справедливо неравенство
sin 2x+ cos x>1.
|
|
Сложность: 5- Классы: 10,11
|
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
y= sin x, x(0;α).
Как с помощью циркуля и линейки построить касательную к этому графику
в заданной его точке, если:
а)
α(
;π)
;
б)
α(0
;)
?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 92]