ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
Сфера вписана в правильную треугольную пирамиду SKLM ( S –
вершина), а также вписана в
прямую треугольную призму ABCA1B1C1 , у которой AB=AC , BC=4 Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить? В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице? Четырехугольник ABCD описан около окружности. Докажите, что радиус этой окружности меньше суммы радиусов окружностей, вписанных в треугольники ABC и ACD .
В четырехугольник ABCD можно вписать окружность. Пусть K —
точка пересечения его диагоналей. Известно, что
AB > BC > BK,
BK =
Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов. На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём BO/OB1 = k. Найдите отношение площади треугольника ABC к площади треугольника A1B1C1. В треугольнике ABC на стороне AC взята точка K, причём AK = 1, KC = 3, а на стороне AB взята точка L, причём AL : LB = 2 : 3. Пусть Q – точка пересечения прямых BK и CL. Площадь треугольника AQC равна 1. Найдите высоту треугольника ABC, опущенную из вершины B. На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число. Про числа a и b известно, что a=b+1 . Может ли оказаться так, что a4=b4 ?
Медианы треугольника равны 5, 6 и 5. Найдите площадь треугольника.
Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку. Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 4212]
Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?
На вешалке висят 20 платков. 17 девочек по очереди подходят к вешалке, и каждая либо снимает, либо вешает ровно один платок.
Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.
Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку. Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.
Кузнечик прыгает вдоль прямой вперёд на 80 см или назад на 50 см. Может ли он менее чем за 7 прыжков удалиться от начальной точки ровно на 1 м 70 см?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 4212]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке