Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В треугольнике ABC медианы AA' , BB' и CC' продлили до пересечения с описанной окружностью в точках A0 , B0 и C0 соответственно. Известно, что точка M пересечения медиан треугольника ABC делит отрезок AA0 пополам. Докажите, что треугольник A0B0C0 – равнобедренный.

Вниз   Решение


В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

ВверхВниз   Решение


В трапеции ABCD с большим основанием BC и площадью, равной 4 , прямые BC и AD касаются окружности диаметром 2 в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна . Найдите величину угла MDN и длину основания BC .

ВверхВниз   Решение


Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

ВверхВниз   Решение


Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

ВверхВниз   Решение


Докажите, что прямые  y = k1x + l1  и  y = k2x + l2  параллельны тогда и только тогда, когда   k1 = k2  и  l1l2.

ВверхВниз   Решение


Автор: Шноль Д.Э.

В четырехугольниках $ABCD$ и $A_1B_1C_1D_1$ равны соответствующие углы. Кроме того, $AB=A_1B_1$, $AC=A_1C_1$, $BD=B_1D_1$. Обязательно ли четырехугольники $ABCD$ и $A_1B_1C_1D_1$ равны?

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

ВверхВниз   Решение


Имеется набор гирь со следующими свойствами:

  1. В нем есть 5 гирь, попарно различных по весу.
  2. Для любых двух гирь найдутся две другие гири того же суммарного веса.
Какое наименьшее число гирь может быть в этом наборе?

ВверхВниз   Решение


В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

ВверхВниз   Решение


Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

ВверхВниз   Решение


Отрезок AB является диаметром окружности. Вторая окружность с центром в точке B имеет радиус, равный 2, и пересекается с первой окружностью в точках C и D. Хорда CE второй окружности является частью касательной к первой окружности и равна 3. Найдите радиус первой окружности.

ВверхВниз   Решение


Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

ВверхВниз   Решение


Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Вверх   Решение

Задачи

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 489]      



Задача 110178

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
[ Процессы и операции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 6-
Классы: 9,10,11

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Прислать комментарий     Решение

Задача 111729

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Неравенства с площадями ]
[ Наименьшая или наибольшая площадь (объем) ]
Сложность: 6-
Классы: 10,11

Пусть h  — наименьшая высота тетраэдра, d  — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ?
Прислать комментарий     Решение


Задача 73665

Темы:   [ Системы точек ]
[ Метод ГМТ ]
[ Метод ГМТ в пространстве ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Движение помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Объем помогает решить задачу ]
Сложность: 10-
Классы: 9,10,11

Какое наибольшее число точек можно разместить a) на плоскости; б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Прислать комментарий     Решение


Задача 105076

Темы:   [ Полуинварианты ]
[ Двоичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

Прислать комментарий     Решение

Задача 107997

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего ]
Сложность: 4
Классы: 8,9,10,11

Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Прислать комментарий     Решение

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .