ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.

   Решение

Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1275]      



Задача 102697

Темы:   [ Перегруппировка площадей ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Из точки K, находящейся вне окружности с центром O, проведены две касательные KL и KM (L и M — точки касания). Отрезок KO пересекается с окружностью в точке N и с отрезком LM в точке P. Прямая MN пересекает отрезок KL в точке Q. Известно, что площади треугольников KNO и LNP равны. Найдите отношение длин отрезков KM и MN.

Прислать комментарий     Решение


Задача 102701

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  BD : BE,  если  AD = 8  и  AE = 2.
  б) Сравните площади треугольников BDE и BDF.

Прислать комментарий     Решение

Задача 105207

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Вписанный угол равен половине центрального ]
[ Касающиеся окружности ]
Сложность: 4-
Классы: 7,8,9

Назовем тропинкой замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки M на ней, что любая прямая, проходящая через M, делит тропинку пополам, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.

Прислать комментарий     Решение

Задача 107786

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.

Прислать комментарий     Решение

Задача 108069

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.

Прислать комментарий     Решение

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .