ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = Сравните числа У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются товарищами, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана? Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника. ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| . Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса? В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой. В треугольнике ABC взяты точка N на стороне AB, а точка
M – на стороне AC. Отрезки CN и BM пересекаются в точке O, AN : NB = 2 : 3, BO : OM = 5 : 2. В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что AB = A1B1, CD = C1D1 и ∠ADC = ∠A1D1C1. В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 207]
В треугольнике ABC взяты точка N на стороне AB, а точка
M – на стороне AC. Отрезки CN и BM пересекаются в точке O, AN : NB = 2 : 3, BO : OM = 5 : 2.
В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.
В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны.
Высоты остроугольного треугольника ABC, проведенные из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке