Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

Вниз   Решение


Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .

ВверхВниз   Решение


В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?

ВверхВниз   Решение


Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

ВверхВниз   Решение


Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите плоский угол при вершине пирамиды.

ВверхВниз   Решение


Автор: Ботин Д.А.

Придворный астролог называет момент времени хорошим, если часовая, минутная и секундная стрелки часов находятся по одну сторону от какого-нибудь диаметра циферблата (стрелки вращаются на общей оси и не делают скачков). Какого времени в сутках больше, хорошего или плохого?

ВверхВниз   Решение


Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

ВверхВниз   Решение


Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.

ВверхВниз   Решение


Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.

ВверхВниз   Решение


В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

ВверхВниз   Решение


Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .

Вверх   Решение

Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2399]      



Задача 109230

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите плоский угол при вершине пирамиды.
Прислать комментарий     Решение


Задача 109231

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.
Прислать комментарий     Решение


Задача 109232

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Двугранный угол при основании правильной n -угольной пирамиды равен β . Найдите двугранный угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109235

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .