ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите наибольшее значение выражения  x²yy²x,  если  0 ≤ x ≤ 1  и  0 ≤ y ≤ 1.

Вниз   Решение


Точки K и M – середины ребер AB и AC треугольной пирамиды ABCD с площадью основания p . Найдите площадь грани BCD , если сечение DKM имеет площадь q , а основание высоты пирамиды попадает в точку пересечения медиан основания ABC .

Вверх   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 2404]      



Задача 109251

Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 3
Классы: 10,11

Существует ли тетраэдр, у которого пары противоположных рёбер равны 12 и 12, 5 и 5, 13 и 13?
Прислать комментарий     Решение


Задача 109252

Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 3
Классы: 10,11

Существует ли тетраэдр, у которого пары противоположных рёбер равны 3 и 3, 4 и 4, 5 и 5?
Прислать комментарий     Решение


Задача 109259

Темы:   [ Площадь сечения ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Точки K и M – середины ребер AB и AC треугольной пирамиды ABCD с площадью основания p . Найдите площадь грани BCD , если сечение DKM имеет площадь q , а основание высоты пирамиды попадает в точку пересечения медиан основания ABC .
Прислать комментарий     Решение


Задача 109270

Темы:   [ Конус ]
[ Свойства разверток ]
Сложность: 3
Классы: 10,11

Угол в развёртке боковой поверхности конуса равен 120o . Найдите угол при вершине осевого сечения конуса.
Прислать комментарий     Решение


Задача 109271

Темы:   [ Конус ]
[ Свойства разверток ]
Сложность: 3
Классы: 10,11

Угол в развёртке боковой поверхности конуса равен 90o . Найдите угол при вершине осевого сечения конуса.
Прислать комментарий     Решение


Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .