ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильном тетраэдре ABCD с ребром a точка M – середина AB , K – середина CD . Найдите угол и расстояние между прямыми CM и BK . В каком отношении общий перпендикуляр этих прямых делит отрезок CM и BK ?

   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 378]      



Задача 109353

Темы:   [ Правильный тетраэдр ]
[ Расстояние между скрещивающимися прямыми ]
[ Векторы помогают решить задачу ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

В правильном тетраэдре ABCD с ребром a точка M – середина AB , N – середина BC . Найдите угол и расстояние между прямыми CM и DN . В каком отношении общий перпендикуляр этих прямых делит отрезок DN и CM ?
Прислать комментарий     Решение


Задача 109354

Темы:   [ Правильный тетраэдр ]
[ Расстояние между скрещивающимися прямыми ]
[ Векторы помогают решить задачу ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

В правильном тетраэдре ABCD с ребром a точка M – середина AB , K – середина CD . Найдите угол и расстояние между прямыми CM и BK . В каком отношении общий перпендикуляр этих прямых делит отрезок CM и BK ?
Прислать комментарий     Решение


Задача 66176

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Объем помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Задача 65778

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Объем призмы ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4-
Классы: 10,11

Расследуя одно дело, следователь Башковицкий обнаружил, что ключевой свидетель – тот из семьи Петровых, кто в тот роковой день пришёл домой прежде прочих. Расследование выявило следующие факты.
  1. Соседка Марья Кузьминична хотела одолжить у Петровых соли, звонила им в дверь, но никто не открыл. Во сколько? Да кто ж знает? Темно уж было...
  2. Галина Ефимовна Петрова, придя вечером домой, обнаружила обоих детей на кухне, а мужа на диване – у него болела голова.
  3. Муж Анатолий Иванович заявил, что как пришёл, сразу лёг на диван и задремал, никого не видел, ничего не слышал, соседка точно не приходила – звонок бы его разбудил.
  4. Дочь Светлана сказала, что, вернувшись домой, сразу ушла к себе в комнату, про отца ничего не знает, но в прихожей, как всегда, споткнулась о Димкин ботинок.
  5. Дмитрий когда пришёл – не помнит, отца не видел, а как Светка ругалась из-за ботинка – слышал.
  "Ага, – задумался Башковицкий. – Какова же вероятность того, что Дмитрий вернулся домой раньше отца?"

Прислать комментарий     Решение

Задача 66249

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Раскраски ]
[ Правильный тетраэдр ]
[ Объем помогает решить задачу ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 10,11

Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней.

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .