Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Вниз   Решение


Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.

ВверхВниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Окружности с центрами O1 и O2 имеют общую хорду AB , AO1B = 120o . Отношение длины второй окружности к длине первой равно . Найдите угол AO2B .

ВверхВниз   Решение


Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 8 и 4, а расстояние между точками касания этих окружностей с прямой BC равно $ \sqrt{129}$. Найдите AD.

ВверхВниз   Решение


Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

ВверхВниз   Решение


Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.

ВверхВниз   Решение


Площади граней ABC и ADC тетраэдра ABCD равны P и Q , двугранный угол между ними равен α . Найдите площадь треугольника, по которому биссекторная плоскость указанного угла пересекает тетраэдр.

ВверхВниз   Решение


В равностороннем треугольнике ABC сторона равна a . На стороне BC лежит точка D , а на AB – точка E так, что BD = a , AE=DE . Найдите CE .

ВверхВниз   Решение


В выпуклом четырёхугольнике сумма расстояний от любой точки внутри четырёхугольника до четырёх прямых, на которых лежат стороны четырёхугольника, постоянна. Докажите, что этот четырёхугольник — параллелограмм.

ВверхВниз   Решение


Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.

ВверхВниз   Решение


Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



Задача 58094

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральная симметрия помогает решить задачу ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 4+
Классы: 8,9,10

В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более k хорд, то сумма длин хорд меньше $ \pi$k.
Прислать комментарий     Решение


Задача 108026

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 108596

Темы:   [ Вспомогательные равные треугольники ]
[ Параллелограмм Вариньона ]
[ Поворот помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

Прислать комментарий     Решение

Задача 110157

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .