Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

Вниз   Решение


В Заитильщине 57 деревень, между некоторыми из которых проложены дороги. Известно, что из каждой деревни можно попасть в любую другую, притом по единственному маршруту.
  а) Докажите, что найдётся деревня, из которой выходит лишь одна дорога.
  б) Сколько дорог в Заитильщине?

ВверхВниз   Решение


Автор: Сонкин М.

Окружность, вписанная в треугольник ABC касается его сторон AB , BC и CA в точках M , N и K соответственно. Прямая, проходящая через вершину A и параллельная NK , пересекает прямую MN в точке D . Прямая, проходящая через вершину A и параллельная MN , пересекает прямую NK в точке E . Докажите, что прямая DE содержит среднюю линию треугольника ABC .

ВверхВниз   Решение


В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

ВверхВниз   Решение


Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

ВверхВниз   Решение


Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?

ВверхВниз   Решение


Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

ВверхВниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

ВверхВниз   Решение


В стране 2001 город, некоторые пары городов соединены дорогами, причём из каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на  2001 – k  республик так, что никакие два города из одной республики не будут соединены дорогой.

ВверхВниз   Решение


Автор: Шмаров В.

Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.

ВверхВниз   Решение


Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.

ВверхВниз   Решение


Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4.

ВверхВниз   Решение


Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1224]      



Задача 109942

Темы:   [ Процессы и операции ]
[ Методы решения задач с параметром ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.
Прислать комментарий     Решение


Задача 109963

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Полуинварианты ]
Сложность: 4-
Классы: 7,8,9

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

Прислать комментарий     Решение

Задача 110029

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 7,8,9

Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?

Прислать комментарий     Решение

Задача 110162

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Неравенства с модулями ]
[ Иррациональные неравенства ]
Сложность: 4-
Классы: 9,10,11

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Прислать комментарий     Решение

Задача 116635

Темы:   [ Процессы и операции ]
[ Квадратные уравнения. Теорема Виета ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен f(x), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен g(x), корнями которого являются записанные в его тетради два числа. Если уравнение  f(x) = g(x)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .