Версия для печати
Убрать все задачи
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$.
Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$.
Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

Решение
Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.


Решение
В тетраэдре
ABCD из вершины
A опустили перпендикуляры
AB' ,
AC' ,
AD' на плоскости, делящие двугранные углы при ребрах
CD ,
BD ,
BC
пополам. Докажите, что плоскость
(
B'C'D')
параллельна плоскости
(
BCD)
.


Решение
Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.


Решение
Плоскость проходит через сторону основания правильной
четырёхугольной пирамиды и делит пополам двугранный угол при этой стороне.
Найдите площадь основания пирамиды наименьшего объёма, если известно, что
указанная плоскость пересекает высоту пирамиды в точке, удалённой на
расстояние
d от плоскости основания.


Решение
Объём треугольной пирамиды 1. Найдите объём пирамиды с
вершинами в точках пересечения медиан данной пирамиды.

Решение