ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

Вниз   Решение


Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.

ВверхВниз   Решение


В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

ВверхВниз   Решение


Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.

ВверхВниз   Решение


Плоскость проходит через сторону основания правильной четырёхугольной пирамиды и делит пополам двугранный угол при этой стороне. Найдите площадь основания пирамиды наименьшего объёма, если известно, что указанная плоскость пересекает высоту пирамиды в точке, удалённой на расстояние d от плоскости основания.

ВверхВниз   Решение


Объём треугольной пирамиды 1. Найдите объём пирамиды с вершинами в точках пересечения медиан данной пирамиды.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 110395

Темы:   [ Гомотетия помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Объём треугольной пирамиды 1. Найдите объём пирамиды с вершинами в точках пересечения медиан данной пирамиды.
Прислать комментарий     Решение


Задача 115941

Темы:   [ Гомотетия помогает решить задачу ]
[ Задачи на максимум и минимум ]
Сложность: 4
Классы: 10,11

Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC .
Прислать комментарий     Решение


Задача 109666

Темы:   [ Гомотетия помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
[ Метод ГМТ в пространстве ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5+
Классы: 10,11

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.
Прислать комментарий     Решение


Задача 107769

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллельный перенос ]
[ Выпуклые тела ]
[ Принцип Дирихле (площадь и объем) ]
[ Объем помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 6-
Классы: 10,11

Из выпуклого многогранника с 9 вершинами, одна из которых A, параллельными переносами, переводящими A в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).
Прислать комментарий     Решение


Задача 67115

Темы:   [ Построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9,10,11

Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .