ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение. Решение |
Страница: << 86 87 88 89 90 91 92 [Всего задач: 460]
Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
В трапеции ABCD площади 1 основания BC и AD относятся как 1 : 2.  Пусть K – середина диагонали AC. Прямая DK пересекает сторону AB в точке L. Найдите площадь четырёхугольника BCKL.
Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.
Страница: << 86 87 88 89 90 91 92 [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|