ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Число    записали в виде несократимой дроби. Найдите её знаменатель.

Вниз   Решение


Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник.

ВверхВниз   Решение


Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше  36o.

ВверхВниз   Решение


На клетчатой доске размером 4×4 Петя закрашивает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки не пересекающимися и не вылезающими за границу квадрата уголками из трёх клеток. Какое наименьшее количество клеток должен закрасить Петя, чтобы Вася не выиграл?

ВверхВниз   Решение


Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка.

ВверхВниз   Решение


Основание наклонной призмы – равносторонний треугольник со стороной a . Одно из боковых рёбер равно b и образует с прилежащими сторонами основания углы 45o . Найдите боковую поверхность призмы.

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя  — вверх орлом, а остальные  — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

ВверхВниз   Решение


Автор: Фольклор

Для некоторых чисел а, b, c и d, отличных от нуля, выполняется равенство:    .   Найдите знак числа ас.

ВверхВниз   Решение


На доске выписаны числа 1, ½, ..., 1/n. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число останется после  n – 1  такой операции?

ВверхВниз   Решение


Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 60]      



Задача 109431

Темы:   [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь многоугольника ]
Сложность: 3
Классы: 7,8,9

На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.
Прислать комментарий     Решение


Задача 110842

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Прислать комментарий     Решение

Задача 35015

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри равностороннего треугольника до его сторон не зависит от положения точки.
Прислать комментарий     Решение


Задача 52352

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AC как на диаметре построена окружность, которая пересекает сторону AB в точке M, а сторону BC – в точке N. Известно, что  AC = 2,  AB = 3,  AM : MB = 2 : 3.  Найдите AN.

Прислать комментарий     Решение

Задача 52353

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Точка B расположена вне окружности, а точки A и C – две диаметрально противоположные точки этой окружности. Отрезок AB пересекается с окружностью в точке P, а отрезок CB – в точке Q. Известно, что  AB = 2,  PC = AQ = .  Найдите AC.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .