Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Вниз   Решение


Автор: Ботин Д.А.

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

ВверхВниз   Решение


Докажите, что sin< при 0<x< .

ВверхВниз   Решение


Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

ВверхВниз   Решение


Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.

ВверхВниз   Решение


Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб.

ВверхВниз   Решение


Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Угол, образованный лучами  y = x  и  y = 2x  при  x ≥ 0,  высекает на параболе  y = x² + px + q  две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой.

ВверхВниз   Решение


Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

ВверхВниз   Решение


В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.

ВверхВниз   Решение


Окружность вписана в равнобедренную трапецию ABCD с основаниями  BC = a  и  AD = b.  Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём  FH = AH.  Найдите AB, BH, BP, DF и расположите найденные величины по возрастанию.

ВверхВниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


Про углы треугольника ABC известно, что      и    .   Найдите величину угла C.

ВверхВниз   Решение


Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 200 К, a = 75 К/мин, b = -0,5 К/ мин2 . Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Автор: Сонкин М.

В треугольнике ABC  (AB > BC)  проведены медиана BM и биссектриса BL. Прямая, проходящая через точку M параллельно AB, пересекает BL в точке D, а прямая, проходящая через L параллельно BC, пересекает BM в точке E. Докажите, что прямые ED и BL перпендикулярны.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и 14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
  а) Сколько жёлтых одуванчиков было на поляне позавчера?
  б) Сколько белых одуванчиков будет на поляне завтра?

ВверхВниз   Решение


Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 111813

Темы:   [ Свойства коэффициентов многочлена ]
[ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4+
Классы: 9,10,11

Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

Прислать комментарий     Решение

Задача 115404

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

Прислать комментарий     Решение

Задача 98355

Темы:   [ Свойства коэффициентов многочлена ]
[ Принцип крайнего (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Системы отрезков, прямых и окружностей ]
[ Геометрические интерпретации в алгебре ]
Сложность: 5-
Классы: 9,10

Пусть  1 + x + x² + ... + xn–1 = F(x)G(x),  где F и G – многочлены, коэффициенты которых – нули и единицы  (n > 1).
Докажите, что один из многочленов F, G представим в виде  (1 + x + x² + ... + xk–1)T(x),  где T(x) – также многочлен с коэффициентами 0 и 1  (k > 1).

Прислать комментарий     Решение

Задача 109621

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

Прислать комментарий     Решение

Задача 111831

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .