ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

ABCD – выпуклый четырёхугольник, в котором  AD = BD = AC.  Точки M и N – середины сторон AB и CD соответственно. Отрезок MN пересекает диагонали четырёхугольника в точках X и Y, P – точка пересечения AN и DM. Докажите, что  PX = PY.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 603]      



Задача 64976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Построение треугольников по различным точкам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 9,10,11

Восстановите равнобедренный треугольник ABC  (AB = AC)  по точкам I, M, H пересечения биссектрис, медиан и высот соответственно.

Прислать комментарий     Решение

Задача 65362

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  AB = BC,  ∠B = 20°.  Точка M на основании AC такова, что  AM : MC = 1 : 2,  точка H – проекция C на BM. Найдите угол AHB.

Прислать комментарий     Решение

Задача 78288

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

ABC – равнобедренный треугольник;  AB = BC,  BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что  BK = 3/2 R,  где R – радиус описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 111882

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4
Классы: 8,9

Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC?

Прислать комментарий     Решение

Задача 115300

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

ABCD – выпуклый четырёхугольник, в котором  AD = BD = AC.  Точки M и N – середины сторон AB и CD соответственно. Отрезок MN пересекает диагонали четырёхугольника в точках X и Y, P – точка пересечения AN и DM. Докажите, что  PX = PY.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .