Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

ВверхВниз   Решение


Через точку A проведена прямая l, пересекающая окружность S с центром O в точках M и N и не проходящая через O. Пусть M' и N' — точки, симметричные M и N относительно OA, а A' — точка пересечения прямых MN' и M'N. Докажите, что A' совпадает с образом точки A при инверсии относительно S (и, следовательно, не зависит от выбора прямой l).

ВверхВниз   Решение


По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?

ВверхВниз   Решение


В одной урне лежат два белых шара, в другой два черных, в третьей - один белый и один черный. На каждой урне висела табличка, указывающее ее содержимое: ББ, ЧЧ, БЧ. Некто перевесил таблички так, что теперь каждая табличка указывает содержимое урны неправильно. Разрешается вынуть шар из любой урны, не заглядывая в нее. Какое наименьшее число извлечений потребуется, чтобы определить состав всех трех урн?

ВверхВниз   Решение


Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.

ВверхВниз   Решение


Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?

ВверхВниз   Решение


В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что  BK : CK = FS : ES.

ВверхВниз   Решение


Основанием треугольной пирамиды ABCD является треугольник ABC , в котором A = , C = , BC = 2 . Рёбра AD , BD , CD равны между собой. Сфера радиуса 1 касается рёбер AD , BD , продолжения ребра CD за точку D и плоскости ABC . Найдите отрезок касательной, проведённой из точки A к сфере.

ВверхВниз   Решение


Какое минимальное количество точек на поверхности
   а) додекаэдра,
   б) икосаэдра
надо отметить, чтобы на каждой грани была хотя бы одна отмеченная точка?

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B, причём центр O окружности S1 лежит на окружности S2. Хорда AC окружности S1 пересекает окружность S2 в точке D. Докажите, что отрезки OD и BC перпендикулярны.

ВверхВниз   Решение


Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит ни с одним из них.

ВверхВниз   Решение


В окружность вписан треугольник ABC. Точка P пробегает дугу ACB. Найдите геометрическое место центров вписанных окружностей всевозможных треугольников ABP.

ВверхВниз   Решение


Число x натуральное. Среди утверждений   1)  2x > 70,   2)  x > 100,   3)  3x > 25,   4)   x ≥ 10,   5)  x > 5   три неверных и два верных. Чему равно x?

ВверхВниз   Решение


Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что  AB = a.  Найдите NM.

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

ВверхВниз   Решение


Основанием пирамиды является треугольник PQR , в котором PR = 2 , Q = , R = . Вершина S пирамиды равноудалена от точек P и Q . Сфера касается рёбер PS , QS , продолжения ребра RS за точку S и плоскости PQR . Точка касания с плоскостью основания пирамиды и ортогональная проекция вершины S на эту плоскость лежат на окружности, описанной вокруг треугольника PQR . Найдите рёбра PS , QS , RS .

ВверхВниз   Решение


Автор: Фольклор

Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.

ВверхВниз   Решение


а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1010]      



Задача 30421

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?

Прислать комментарий     Решение

Задача 30427

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).

Прислать комментарий     Решение

Задача 30431

Тема:   [ Обход графов ]
Сложность: 2
Классы: 6,7

Имеется группа островов, соединённых мостами так, что от каждого острова можно добраться до любого другого. Турист обошёл все острова, пройдя по каждому мосту ровно один раз. На острове Троекратном он побывал трижды. Сколько мостов ведёт с Троекратного, если турист
  а) не с него начал и не на нём закончил?
  б) с него начал, но не на нём закончил?
  в) с него начал и на нём закончил?

Прислать комментарий     Решение

Задача 30687

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Прислать комментарий     Решение

Задача 30689

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1010]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .