Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

Вниз   Решение


В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла $ {\frac{45}{98}}$ площади треугольника ABC?

ВверхВниз   Решение


Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

ВверхВниз   Решение


В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n  (m > n).  Найдите другой катет и гипотенузу.

ВверхВниз   Решение


Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?

ВверхВниз   Решение


Докажите, что при a, b, c имеет место неравенство  

ВверхВниз   Решение


На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

ВверхВниз   Решение


Для каких n возможны равенства:   a)  φ(n) = n – 1;   б)  φ(2n) = 2φ(n);   в)  φ(nk) = nk–1φ(n)?

ВверхВниз   Решение


Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.

ВверхВниз   Решение


Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?

ВверхВниз   Решение


Решите уравнения   а)  φ(x) = x/2;   б)  φ(x) = x/3;    φ(x) = x/4.

ВверхВниз   Решение


а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?

б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?

ВверхВниз   Решение


Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

ВверхВниз   Решение


Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)

ВверхВниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


Два равносторонних треугольника ABC и CDE расположены по одну сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.

ВверхВниз   Решение


На конференцию приехали 18 учёных, из которых ровно 10 знают сногсшибательную новость. Во время перерыва (кофе-брейка) все учёные разбиваются на случайные пары, и в каждой паре каждый, кто знает новость, рассказывает эту новость другому, если тот её ещё не знал.
  а) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 13.
  б) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 14.
  в) Обозначим буквой X количество учёных, которые знают сногсшибательную новость после кофе-брейка. Найдите математическое ожидание X.

ВверхВниз   Решение


В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали  n² + 9n – 2  гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?

ВверхВниз   Решение


У Пети было несколько сторублёвок, других денег не было. Петя стал покупать книги (каждая книга стоит целое число рублей) и получать сдачу мелочью (монетами в 1 рубль). При покупке дорогой книги (не дешевле 100 рублей) Петя расплачивался только сторублёвками (минимальным необходимым их количеством), а при покупке дешёвой (дешевле 100 рублей) расплачивался мелочью, если хватало, а если не хватало – сторублёвкой. К моменту, когда сторублёвок не осталось, Петя потратил на книги ровно половину своих денег. Мог ли Петя потратить на книги хотя бы 5000 рублей?

ВверхВниз   Решение


Фигура "верблюд" ходит по доске 10 × 10 ходом типа (1, 3) (то есть, она сдвигается сначала на соседнее поле, а затем сдвигается еще на три поля в перпендикулярном направлении; конь, например, ходит ходом типа (1, 2)). Можно ли пройти ходом "верблюда" с какого-то исходного поля на соседнее с ним?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 199]      



Задача 109454

Темы:   [ Инварианты ]
[ Раскраски ]
[ Четность и нечетность ]
[ Пятиугольники ]
Сложность: 3+
Классы: 7,8,9

В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

Прислать комментарий     Решение

Задача 116819

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 8,9

Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Прислать комментарий     Решение

Задача 30761

Темы:   [ Инварианты ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8

Фигура "верблюд" ходит по доске 10 × 10 ходом типа (1, 3) (то есть, она сдвигается сначала на соседнее поле, а затем сдвигается еще на три поля в перпендикулярном направлении; конь, например, ходит ходом типа (1, 2)). Можно ли пройти ходом "верблюда" с какого-то исходного поля на соседнее с ним?

Прислать комментарий     Решение

Задача 88306

Темы:   [ Инварианты ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций?
Прислать комментарий     Решение


Задача 111321

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3+
Классы: 6,7,8

Василиса Премудрая решила запереть Кощея в прямом коридоре, разделенном тремя проходами на четыре комнаты, причем в каждом проходе, облокотившись на одну из стен, стоит толстый усталый стражник. Каждый раз, когда Кощей переходит из одной комнаты в другую, стражник переходит к противоположной стене и облокачивается на нее. Если все стражники облокотятся на одну стену, она не выдержит и рухнет, а Кощей выйдет на свободу. Может ли Василиса изначально так прислонить стражников и разместить Кощея, чтобы он никогда не смог выбраться?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .