Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

a, b, c, d – положительные числа. Докажите, что  

Вниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


Сторона ромба равна 8 см, острый угол равен 30o. Найдите радиус вписанного круга.

ВверхВниз   Решение


Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точка $O$ – центр описанной окружности. Точка $B_1$ симметрична точке $B$ относительно стороны $AC$. Прямые $AO$ и $B_1C$ пересекаются в точке $K$. Докажите, что луч $KA$ является биссектрисой угла $BKB_1$.

ВверхВниз   Решение


Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

ВверхВниз   Решение


Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?

ВверхВниз   Решение


Сколько существует шестизначных чисел, все цифры которых имеют одинаковую чётность?

ВверхВниз   Решение


Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.

ВверхВниз   Решение


От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

ВверхВниз   Решение


Доказать неравенство   .

ВверхВниз   Решение


В равнобедренный треугольник, у которого боковая сторона равна 100, а основание 60, вписана окружность.
Найдите расстояние между точками касания, находящимися на боковых сторонах.

ВверхВниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

ВверхВниз   Решение


Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

ВверхВниз   Решение


Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

ВверхВниз   Решение


На окружности расположены 20 точек. Эти 20 точек попарно соединяются 10 хордами, не имеющими общих концов и непересекающихся.
Сколькими способами это можно сделать?

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

ВверхВниз   Решение


Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами  (p, q).

ВверхВниз   Решение


Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

ВверхВниз   Решение


Докажите, что при  a, b, c > 0  имеет место неравенство   ab/c + ac/b + bc/a ≥ a + b + c.

ВверхВниз   Решение


В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

ВверхВниз   Решение


Количество перестановок множества из n элементов обозначается Pn. Докажите равенство  Pn = n!.

ВверхВниз   Решение


Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 384]      



Задача 35501

Темы:   [ Ориентированные графы ]
[ Многоугольники (прочее) ]
Сложность: 2+
Классы: 7,8,9

На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

Прислать комментарий     Решение

Задача 35765

Темы:   [ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
[ Остовы многогранных фигур ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Прислать комментарий     Решение

Задача 30432

Темы:   [ Обход графов ]
[ Четность и нечетность ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 3-
Классы: 6,7

а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

Прислать комментарий     Решение

Задача 30786

Тема:   [ Деревья ]
Сложность: 3-
Классы: 7,8

Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).

Прислать комментарий     Решение

Задача 30788

Тема:   [ Деревья ]
Сложность: 3-
Классы: 7,8

Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 384]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .