Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Найдите множество середин хорд, проходящих через заданную точку A внутри окружности.

Вниз   Решение


Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина     остается постоянной.

ВверхВниз   Решение


Гипотенуза прямоугольного треугольника равна a, один из острых углов равен α.
Найдите расстояния от основания высоты, опущенной на гипотенузу, до катетов треугольника.

ВверхВниз   Решение


В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.

ВверхВниз   Решение


В треугольной пирамиде SABC высота SO проходит через точку O – центр круга, вписанного в основание ABC пирамиды. Известно, что SAC = 60o , SCA = 45o , а отношение площади треугольника AOB к площади треугольника ABC равно . Найдите угол BSC .

ВверхВниз   Решение


Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

ВверхВниз   Решение


Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

ВверхВниз   Решение


Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими?

ВверхВниз   Решение


Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

ВверхВниз   Решение


Докажите, что число 100! не является полным квадратом.

ВверхВниз   Решение


В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?

ВверхВниз   Решение


Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки.

ВверхВниз   Решение


Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

ВверхВниз   Решение


На доске записаны два числа a и b  (a > b).  Их стирают и заменяют числами a+b/2 и a–b/2. С вновь записанными числами поступают аналогичным образом. Верно ли, что после нескольких стираний разность между записанными на доске числами станет меньше 1/2002?

ВверхВниз   Решение


Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.

ВверхВниз   Решение


Может ли n! оканчиваться ровно на пять нулей?

ВверхВниз   Решение


Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 73]      



Задача 35144

Темы:   [ Вписанные и описанные многоугольники ]
[ Пятиугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 9,10

Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

Прислать комментарий     Решение

Задача 79300

Темы:   [ Вписанные и описанные многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны 120o. Доказать, что найдутся две его стороны, имеющие одинаковую длину.
Прислать комментарий     Решение


Задача 108051

Темы:   [ Вписанные и описанные многоугольники ]
[ Пятиугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.

Прислать комментарий     Решение

Задача 116573

Темы:   [ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 10,11

Каково максимальное число попарно непараллельных отрезков с концами в вершинах правильного n-угольника?

Прислать комментарий     Решение

Задача 64847

Темы:   [ Вписанные и описанные многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .