ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1006]      



Задача 35410

Темы:   [ Комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 8,9,10

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Прислать комментарий     Решение

Задача 35438

Темы:   [ Теория графов (прочее) ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

В компании у каждых двух людей ровно пять общих знакомых. Докажите, что количество пар знакомых делится на 3.

Прислать комментарий     Решение

Задача 35479

Тема:   [ Комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9

За круглым столом расселись 10 мальчиков и 15 девочек. Оказалось, что имеется ровно 5 пар мальчиков, сидящих рядом.
Сколько пар девочек, сидящих рядом?

Прислать комментарий     Решение

Задача 35514

Темы:   [ Обход графов ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 8,9

В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?

Прислать комментарий     Решение

Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .