ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC с основанием AC проведена
медиана BM. На ней взята точка D. Докажите равенство треугольников:
Прямоугольный треугольник ABC (∠A = 90°) и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если AB = a. Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4, AD = 3. Найдите сторону BC. В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые, ∠BCA = ∠DCE, а точка M – середина стороны AE. Доказать, что MB = MD. Из точки, лежащей внутри выпуклого n-угольника, проведены лучи,
перпендикулярные его сторонам и пересекающие стороны (или их
продолжения). На этих лучах отложены векторы
a1,...,an, длины которых равны длинам соответствующих сторон.
Докажите, что
a1 +...+ an = 0.
Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab. Прямоугольный треугольник ABC (∠A = 90°) и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если AB = a, AC = b. Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины. |
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1442]
На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 2, взяты точки: K на AB, L на BC, M на CD, N на AD. При этом AK : KB = 2, BL : LC = 1 : 3, CM : MD = 1, DN : NA = 1 : 5. Найдите площадь шестиугольника AKLCMN.
Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны a и b соответственно. Найдите расстояние от вершины A до этой прямой.
Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.
Окружность проходит через середины гипотенузы AB и катета BC прямоугольного треугольника ABC и касается катета AC. В каком отношении точка касания делит катет AC.
Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части.
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1442]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке