ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 159]
Центр окружности, вписанной в прямоугольную трапецию, удалён от концов её боковой стороны на расстояния 15 и 20. Найдите стороны трапеции.
В прямоугольной трапеции лежат две окружности. Одна из них, радиуса 4, вписана в трапецию, а вторая, радиуса 1, касается двух сторон трапеции и первой окружности. Найдите площадь трапеции.
К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно.
В равнобедренном треугольнике ABC (AB = BC) сторона AC = 10. В угол ABC вписана окружность с диаметром 15 так, что она касается стороны AC в её середине. Найдите радиус окружности, вписанной в треугольник ABC.
С помощью циркуля и линейки по данному отрезку a, постройте отрезок b, где а) a = , b = 1; б) a = 7, b = .
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 159] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|