ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 137]      



Задача 53145

Темы:   [ Описанные четырехугольники ]
[ Касающиеся окружности ]
[ Аналитический метод в геометрии ]
Сложность: 4+
Классы: 8,9

Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.

Прислать комментарий     Решение


Задача 66688

Темы:   [ Описанные четырехугольники ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Четырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
Прислать комментарий     Решение


Задача 78088

Тема:   [ Описанные четырехугольники ]
Сложность: 4+
Классы: 10,11

Четырёхугольник описан около окружности. Докажите, что прямые, соединяющие соседние точки касания и не пересекающиеся в одной из этих точек, пересекаются на продолжении диагонали или параллельны ей.
Прислать комментарий     Решение


Задача 111715

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Задача 53607

Темы:   [ Описанные четырехугольники ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4+
Классы: 8,9

Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда EA + AF = EC + CF.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 137]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .