ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа. Докажите, что при простых p > 7 число p4 − 1 делится на 240.
Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.
Докажите неравенство для положительных значений переменных: a³b + b³c + c³a ≥ abc(a + b + c).
Сторона квадрата ABCD равна 1 и является хордой некоторой окружности, причём остальные стороны квадрата лежат вне этой окружности. Касательная CK, проведённая из вершины C к этой же окружности, равна 2. Найдите диаметр окружности.
Диаметры AB и CD окружности S перпендикулярны.
Хорда EA пересекает диаметр CD в точке K, хорда EC пересекает
диаметр AB в точке L. Докажите, что если CK : KD = 2 : 1,
то AL : LB = 3 : 1.
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково а) наибольшее; б) наименьшее возможное число продольных ходов? Пусть n > 2. Докажите, что между n и n! есть по крайней мере одно простое число. Докажите, что множество простых чисел вида p = 6k + 5 бесконечно. Существуют ли такие Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9. Найдите наименьшее простое число, которое можно представить в виде суммы пяти различных простых чисел. Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть на обе чашки весов? Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно. Докажите, что p – простое тогда и только тогда, когда (p – 2)! ≡ 1 (mod p). Какие цифры надо поставить вместо звёздочек, чтобы число 454** делилось на 2, 7 и 9?
Коля Васин задумал число от 1 до 200. За
какое наименьшее число вопросов вы сможете его отгадать, если он
отвечает на каждый вопрос
Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём AB = CD = EF = R. Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R. На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.) Докажите неравенство pn+1 < p1p2...pn (pk – k-е простое число). На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что BD = BC, а на катете BC – такая точка E, что DE = BE. В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания. |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 772]
На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.
AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а AO = 39.
В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.
Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке