Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с основанием AC проведена медиана BM. На ней взята точка D. Докажите равенство треугольников:
  а) ABD и CBD;
  б) AMD и CMD.

Вниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a.

ВверхВниз   Решение


Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
Найдите радиус вписанной окружности данного треугольника.

ВверхВниз   Решение


С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4,  AD = 3.  Найдите сторону BC.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые,  ∠BCA = ∠DCE,  а точка M – середина стороны AE. Доказать, что  MB = MD.

ВверхВниз   Решение


Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.

ВверхВниз   Решение


Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab.

ВверхВниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a,  AC = b.

ВверхВниз   Решение


Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точка E – пересечение диагоналей. Известно, что площадь каждого из треугольников ABE и DCE равна 7, а площадь всего четырёхугольника не превосходит 28;   AD = .  Найдите сторону BC.

ВверхВниз   Решение


  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE  AE = AD,  AC = AB  и  ∠DAC = ∠AEB + ∠ABE.
Докажите, что сторона CD в два раза больше медианы AK треугольника ABE.

ВверхВниз   Решение


На диагоналях AC и BD трапеции ABCD взяты соответственно точки M и N так, что  AM : MC = DN : NB = 1 : 4.
Найдите MN, если основания  AD = a,  BC = b  (a > b).

Вверх   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2254]      



Задача 53615

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, диагонали которого пересекаются в точке M. Известно, что  AB = a,  CD = b,  ∠AMB = α.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53630

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d.

Прислать комментарий     Решение

Задача 53742

Темы:   [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

На диагоналях AC и BD трапеции ABCD взяты соответственно точки M и N так, что  AM : MC = DN : NB = 1 : 4.
Найдите MN, если основания  AD = a,  BC = b  (a > b).

Прислать комментарий     Решение

Задача 53759

Темы:   [ Ромбы. Признаки и свойства ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма.
Найдите сторону ромба, если диагонали параллелограмма равны l и m.

Прислать комментарий     Решение

Задача 53774

Темы:   [ Трапеции (прочее) ]
[ Четырехугольники (построения) ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .