ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L. Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o . Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Длины сторон треугольника образуют арифметическую
прогрессию. Докажите, что радиус вписанной окружности
равен трети одной из высот треугольника.
Через точку M, лежащую внутри параллелограмма ABCD,
проведены прямые PR и QS, параллельные сторонам BC и AB
(точки P, Q, R и S лежат на сторонах AB, BC, CD и DA
соответственно). Докажите, что прямые BS, PD и MC пересекаются в
одной точке.
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$. Доказать, что квадрат любого простого числа p > 3 при делении на 12 даёт в остатке 1. Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.
Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Решить в натуральных числах уравнение x2y–1 + (x + 1)2y–1 = (x + 2)2y–1. У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.) На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный. В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3. Докажите, что если никакие стороны четырехугольника
не параллельны, то середина отрезка, соединяющего
точки пересечения противоположных сторон, лежит на прямой, соединяющей
середины диагоналей (прямая Гаусса).
Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара. На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что BD = BC, а на катете BC – такая точка E, что DE = BE. На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём BO/OB1 = k. Найдите отношение площади треугольника ABC к площади треугольника A1B1C1. |
Страница: << 23 24 25 26 27 28 29 [Всего задач: 144]
Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами.
На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём BO/OB1 = k. Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.
На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если A1B1/AB = n.
Дан правильный 2n-угольник.
Страница: << 23 24 25 26 27 28 29 [Всего задач: 144]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке