ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что
С помощью циркуля и линейки постройте треугольник ABC, если
даны его вершины A и B, прямая l, на которой лежит вершина
C, и разность углов
Точка D лежит на стороне BC равнобедренного треугольника ABC
(AB = CB), причём
CD =
Потроить треугольник по
Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$. На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Число N записано в десятичной системе счисления N =
Найдите сумму квадратов расстояний от точки M, взятой на диаметре некоторой окружности, до концов любой из параллельных этому диаметру хорд, если радиус окружности равен R, а расстояние от точки M до центра окружности равно a.
За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания). Сформулируйте и докажите признак делимости на Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный. Четырёхугольник ABCD вписан в окружность, АС = а, BD = b, AB ⊥ CD. Найдите радиус окружности. Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если CD = a.
В треугольнике ABC известны стороны: AB = 6, BC = 4, AC = 8. Биссектриса угла C пересекает сторону AB в точке D. Через точки A, D и C проведена окружность, пересекающая сторону BC в точке E. Найдите площадь треугольника ADE.
Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15. Построить треугольник ABC по трем точкам H1, H2 и H3, которые являются симметричными отражениями точки пересечения высот искомого треугольника относительно его сторон. Вычислите Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Одна из сторон вписанного четырёхугольника является диаметром окружности.
Правильный треугольник ABC со стороной, равной 3, вписан
в окружность. Точка D лежит на окружности, причём хорда
AD равна
Постройте треугольник ABC по центру описанной
окружности O, точке пересечения медиан M и основанию H
высоты CH.
В треугольнике ABC на сторонах AB, BC и AD взяты соответственно точки K, L и M. Известно, что AK = 5, KB = 3, BL = 2, LC = 7, CM = 1, MA = 6, Найдите расстояние от точки M до середины KL.
|
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 449]
Вычислите биссектрису треугольника ABC, проведённую из вершины A, если BC = 18, AC = 15, AB = 12.
Точка D лежит на стороне BC равнобедренного треугольника ABC
(AB = CB), причём
CD =
Точка D лежит на стороне AB равнобедренного треугольника ABC
(AB = CB), причём
AD =
В треугольнике ABC на сторонах AB, BC и AD взяты соответственно точки K, L и M. Известно, что AK = 5, KB = 3, BL = 2, LC = 7, CM = 1, MA = 6, Найдите расстояние от точки M до середины KL.
Окружность пересекает стороны угла BAC в точках B, N, M и C,
точка N находится между A и B, точка M — между A и C.
Величины углов ACB и BMC равны
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке