Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Существует следующий способ проверить, делится ли данное число N на 19:
  1) отбрасываем последнюю цифру у числа N;
  2) прибавляем к полученному числу произведение отброшенной цифры на 2;
  3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
  4) если остается 19, то 19 делится на N, в противном случае N не делится на 19.
Докажите справедливость этого признака делимости.

Вниз   Решение


Пусть a и b – два положительных числа, причём  a < b.  Построим по этим числам две последовательности {an} и {bn} по правилам:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Докажите, что обе эти последовательности имеют один и тот же предел.
Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается  μ(a, b).

ВверхВниз   Решение


Докажите, что число 192021...7980 делится на 1980.

ВверхВниз   Решение


Существует ли треугольник с высотами, равными 1, 2 и 3?

ВверхВниз   Решение


В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника.

ВверхВниз   Решение


Постройте образ квадрата с вершинами  A(0, 0),  B(0, 2),  C(2, 2),  D(2, 0)  при следующих преобразованиях:
  а)  w = iz;   б)  w = 2iz – 1;   в)  w = z²;   г)  w = z–1.

ВверхВниз   Решение


Каждая из трёх окружностей радиуса r касается двух других. Найдите площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключёнными между точками касания.

ВверхВниз   Решение


Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.

ВверхВниз   Решение


Выразите функции sin x и cos x через комплексную экспоненту.

ВверхВниз   Решение


Докажите, что для любых комплексных чисел z, w справедливо равенство  ezew = ez+w.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD известно, что AB = BC = CD, M — точка пересечения диагоналей, K — точка точка пересечения биссектрис углов A и D. Докажите, что точки A, M, K и D лежат на одной окружности.

ВверхВниз   Решение


С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по точке H пересечения его высот, центру O описанной окружности и прямой l, на которой лежит одна из его сторон.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



Задача 66274

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Проективные преобразования плоскости ]
[ Применение проективных преобразований прямой в задачах на построение ]
[ Инверсия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 9,10

Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.

Прислать комментарий     Решение

Задача 116134

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 4+
Классы: 8,9

Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.

Прислать комментарий     Решение

Задача 116748

Темы:   [ Построение треугольников по различным точкам ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9

Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.

Прислать комментарий     Решение

Задача 55586

Темы:   [ Построение треугольников по различным точкам ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник, если дана прямая, на которой лежит его сторона, и основания биссектрис, проведённых из концов этой стороны.

Прислать комментарий     Решение


Задача 55596

Темы:   [ Построение треугольников по различным точкам ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по точке H пересечения его высот, центру O описанной окружности и прямой l, на которой лежит одна из его сторон.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .