ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при центральной симметрии окружность переходит в окружность.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 55705

Темы:   [ Окружности (прочее) ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3-
Классы: 8,9

Докажите, что при центральной симметрии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 56709

Тема:   [ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Две окружности с центрами O1 и O2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая первую окружность в точке M1, а вторую в точке M2. Докажите, что  $ \angle$BO1M1 = $ \angle$BO2M2.
Прислать комментарий     Решение


Задача 61335

 [Метод Архимеда]
Темы:   [ Окружности (прочее) ]
[ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10,11

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
   а) Найдите P4, p4, P6 и p6.
   б) Докажите, что справедливы следующие рекуррентные соотношения:    P2n = ,        p2n =         (n ≥ 3).
   в) Найдите P96 и p96. Докажите неравенства   310/71 < π < 31/7.

Прислать комментарий     Решение

Задача 66865

Темы:   [ Окружности (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?
Прислать комментарий     Решение


Задача 66875

Тема:   [ Окружности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .