ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что проведённые прямые пересекаются в одной точке.

   Решение

Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 2247]      



Задача 55709

Темы:   [ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что проведённые прямые пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56618

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 66531

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Попов Л. А.

Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.
Прислать комментарий     Решение


Задача 66654

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10,11

На окружности, описанной около четырехугольника $ABCD$, отмечены точки $M$ и $N$ – середины дуг $AB$ и $CD$ соответственно. Докажите, что $MN$ делит пополам отрезок, соединяющий центры вписанных окружностей треугольников $ABC$ и $ADC$.
Прислать комментарий     Решение


Задача 66810

Тема:   [ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Прислать комментарий     Решение


Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .