Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 2254]      



Задача 66654

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10,11

На окружности, описанной около четырехугольника $ABCD$, отмечены точки $M$ и $N$ – середины дуг $AB$ и $CD$ соответственно. Докажите, что $MN$ делит пополам отрезок, соединяющий центры вписанных окружностей треугольников $ABC$ и $ADC$.
Прислать комментарий     Решение


Задача 66810

Тема:   [ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Прислать комментарий     Решение


Задача 66940

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Tran Quang Hung

Дан квадрат $ABCD$ с центром $O$. Из точки $P$, лежащей на меньшей дуге $CD$ описанной около квадрата окружности, проведены касательные к его вписанной окружности, пересекающие сторону $CD$ в точках $M$ и $N$. Прямые $PM$ и $PN$ пересекают отрезки $BC$ и $AD$ соответственно в точках $Q$ и $R$. Докажите, что медиана треугольника $OMN$ из вершины $O$ перпендикулярна отрезку $QR$ и равна его половине.
Прислать комментарий     Решение


Задача 67006

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Индукция (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?
Прислать комментарий     Решение


Задача 67113

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.
Прислать комментарий     Решение


Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .