ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD. Решение |
Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 2247]
Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что проведённые прямые пересекаются в одной точке.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.
Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|