ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите все шестизначные числа, которые уменьшаются втрое при перенесении последней цифры на первое место.
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Окружности с центрами O1 и O2 пересекаются
в точках A и B . Известно, что В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника. Диагонали ромба равны 24 и 70. Найдите сторону ромба. Через вершины A и B треугольника ABC проведены
две параллельные прямые, а прямые m и n симметричны
им относительно биссектрис соответствующих углов.
Докажите, что точка пересечения прямых m и n лежит на
описанной окружности треугольника ABC.
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
С помощью циркуля и линейки через данную внутри окружности точку проведите хорду, которая делилась бы этой точкой пополам.
В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета. В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.
Найдите диагонали ромба, если они относятся как 3 : 4, а периметр равен 1. В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH. В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если
описанные окружности треугольников ABB1 и ACC1 пересекаются в точке,
лежащей на стороне BC, то
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
В равнобедренном треугольнике ABC угол при вершине B равен 120°, а основание равно 8. Найдите боковые стороны.
В треугольнике ABC с углом A, равным
120o,
биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите,
что
В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если
описанные окружности треугольников ABB1 и ACC1 пересекаются в точке,
лежащей на стороне BC, то
В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.
В треугольнике ABC ∠A = 60°, точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение AN : MB.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке