ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника? Внутри окружности радиуса R расположено n точек.
Докажите, что сумма квадратов попарных расстояний между
ними не превосходит n2R2.
n чисел (n > 1) называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на n – 1. Пусть a, b, c, ... – n близких чисел, S – их сумма. Докажите, что
В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF. В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°. Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше. На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны. Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны. а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер? Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M. Окружность ω вписана в треугольник ABC, в котором AB < AC. Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма XY + XZ не зависит от выбора точки X. Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$ Некоторые стороны выпуклого многоугольника красные,
остальные синие. Сумма длин красных сторон меньше половины периметра, и
нет ни одной пары соседних синих сторон. Докажите, что в этот
многоугольник нельзя вписать окружность.
|
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508]
а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры MK1, MK2, ..., MKn к его сторонам (или их продолжениям). Докажите, что б) Докажите, что сумма векторов, проведённых из любой точки M
внутри правильного тетраэдра перпендикулярно к его граням, равна
Около окружности описан n-угольник
A1...An; l — произвольная касательная к окружности, не проходящая через
вершины n-угольника. Пусть ai — расстояние от вершины Ai
до прямой l, bi — расстояние от точки касания
стороны
AiAi + 1 с окружностью до прямой l. Докажите, что:
Некоторые стороны выпуклого многоугольника красные,
остальные синие. Сумма длин красных сторон меньше половины периметра, и
нет ни одной пары соседних синих сторон. Докажите, что в этот
многоугольник нельзя вписать окружность.
Каждая пара противоположных сторон данного выпуклого
шестиугольника обладает следующим свойством: расстояние между
серединами равно
Докажите, что если в выпуклом шестиугольнике
каждая из трех диагоналей, соединяющих противоположные
вершины, делит площадь пополам, то эти диагонали пересекаются в одной
точке.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке