Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Медианы треугольника ABC разрезают его на 6 треугольников. Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности.

Вниз   Решение


Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых AB и DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).

ВверхВниз   Решение


Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n.

ВверхВниз   Решение


Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

ВверхВниз   Решение


В шестиугольнике, описанном около окружности, даны пять последовательных сторон — a, b, c, d, e. Найдите шестую сторону.

ВверхВниз   Решение


Автор: Савин А.П.

В таблице
    0 1 2 3 ... 9
    9 0 1 2 ... 8
    8 9 0 1 ... 7
        ...
    1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.

ВверхВниз   Решение


Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?

ВверхВниз   Решение


Биссектрисы $AI$ и $CI$ пересекают описанную окружность треугольника $ABC$ в точках $A_1$, $C_1$ соответственно. Описанная окружность треугольника $AIC_1$ пересекает сторону $AB$ в точке $C_0$; аналогично определим $A_0$. Докажите, что точки $A_0,$ $A_1$, $C_0$, $C_1$ лежат на одной прямой.

ВверхВниз   Решение


Известно, что  a5a3 + a = 2.  Докажите, что  a6 > 3.

ВверхВниз   Решение


Можно ли разрезать правильный треугольник на 1000000 выпуклых многоугольников так, чтобы любая прямая имела общие точки не более чем с 40 из них?

ВверхВниз   Решение


Каждое неотрицательное целое число представимо, причём единственным образом, в виде     где x и y – целые неотрицательные числа. Докажите это.

ВверхВниз   Решение


Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

ВверхВниз   Решение


Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик?

ВверхВниз   Решение


Докажите, что выпуклый 22-угольник нельзя разрезать диагоналями на 7 пятиугольников.

ВверхВниз   Решение


Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)

ВверхВниз   Решение


Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]      



Задача 61100

Темы:   [ Многочлены Чебышева ]
[ Тригонометрия (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 9,10,11

Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

Прислать комментарий     Решение

Задача 61253

Тема:   [ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

Прислать комментарий     Решение

Задача 61260

Тема:   [ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Выразите через a и b действительный корень уравнения  x³ – a³ – b³ – 3abx = 0.
Найдите представления для двух комплексных корней этого уравнения.

Прислать комментарий     Решение

Задача 61261

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Докажите, что   (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ,

если   X = ax + cy + bz,   Y = cx + by + az,   Z = bx + ay + cz.

Прислать комментарий     Решение

Задача 61263

Темы:   [ Кубические многочлены ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3
Классы: 9,10,11

Решите уравнение  x³ + x – 2 = 0  подбором и по формуле Кардано.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .