Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1.
Докажите, что треугольники ABC и ABC1 – равнобедренные.

Вниз   Решение


На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?

ВверхВниз   Решение


Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам?

ВверхВниз   Решение


Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


ВверхВниз   Решение


Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).

ВверхВниз   Решение


На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$.

ВверхВниз   Решение


Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

ВверхВниз   Решение


На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

ВверхВниз   Решение


Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

ВверхВниз   Решение


С помощью одного циркуля постройте окружность, проходящую через три данные точки.

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


ВверхВниз   Решение


Пусть $ \angle$A < $ \angle$B < $ \angle$C < 90o. Докажите, что центр вписанной окружности треугольника ABC лежит внутри треугольника BOH, где O — центр описанной окружности, H — точка пересечения высот.

ВверхВниз   Решение


Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?

ВверхВниз   Решение


С помощью одного циркуля постройте окружность, в которую переходит данная прямая AB при инверсии относительно данной окружности с данным центром O.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая первую окружность в точке M1, а вторую в точке M2. Докажите, что  $ \angle$BO1M1 = $ \angle$BO2M2.

ВверхВниз   Решение


Пусть a и b — комплексные числа, лежащие на окружности с центром в нуле, u — точка пересечения касательных к этой окружности в точках a и b. Докажите, что u = 2ab/(a + b).

ВверхВниз   Решение


Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 63]      



Задача 78003

Темы:   [ Многочлены (прочее) ]
[ Производная и кратные корни ]
Сложность: 3
Классы: 10,11

Доказать, что если     то  x4 + a1x³ + a2x² + a3x + a4  делится на  (x – x0)².

Прислать комментарий     Решение

Задача 116227

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 10,11

Сравните между собой наименьшие положительные корни многочленов  x2011 + 2011x – 1  и  x2011 – 2011x + 1.

Прислать комментарий     Решение

Задача 30263

Темы:   [ Многочлены (прочее) ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

Автор: Жуков Г.

Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n,  0 ≤ l ≤ n),  что графики многочленов  P(x) + axk  и  Q(x) + bxl  не будут иметь общих точек.

Прислать комментарий     Решение

Задача 60964

Тема:   [ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

Пусть  x1, x2,..., xn  – корни уравнения  anxn + ... + a1x + a0 = 0.  Какие корни будут у уравнений
  а)  a0xn + ... + an–1x + an = 0;
  б)  anx2n + ... + a1x² + a0 = 0?

Прислать комментарий     Решение

Задача 60996

Темы:   [ Многочлены (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие многочлены P(x) и Q(x), что  (x + 1)P(x) + (x4 + 1)Q(x) = 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .