ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На координатной плоскости изображен график функции  y = ax² + bx + c  (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции  y = cx² + 2bx + a.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 965]      



Задача 64344

Темы:   [ Исследование квадратного трехчлена ]
[ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 3+
Классы: 9,10

Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений  (x – a)(x – b) = x – c,  (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b  имеют решение.

Прислать комментарий     Решение

Задача 64491

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 9,10,11

На координатной плоскости изображен график функции  y = ax² + bx + c  (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции  y = cx² + 2bx + a.

Прислать комментарий     Решение

Задача 65128

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 10,11

Автор: Храбров А.

Квадратный трёхчлен  f(x) имеет два различных корня. Оказалось, что для любых чисел a и b верно неравенство  f(a² + b²) ≥ f(2ab).
Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.

Прислать комментарий     Решение

Задача 65176

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

По положительным числам х и у вычисляют  а = 1/y  и  b = y + 1/x.  После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?

Прислать комментарий     Решение

Задача 65242

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .