Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?

Вниз   Решение


Точка на гипотенузе, равноудалённая от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40. Найдите катеты треугольника.

ВверхВниз   Решение


Площадь треугольника ABC равна 1, $ \angle$A = arctg$ {\frac{3}{4}}$, точка O — середина стороны AC. Окружность с центром в точке O касается стороны BC и пересекает сторону AB в точках M и N, при этом AM = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.

ВверхВниз   Решение


В параллелограмме ABCD сторона AB равна 1 и равна диагонали BD. Диагонали относятся как 1 : $ \sqrt{3}$. Найдите площадь той части круга, описанного около треугольника BCD, которая не принадлежит кругу, описанному около треугольника ADC.

ВверхВниз   Решение


В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?

ВверхВниз   Решение


Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную 1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее $ {\frac{1}{9}}$.

ВверхВниз   Решение


На плоскости нарисован правильный многоугольник A1A2A3A4A5. Можно ли выбрать в плоскости множество точек, обладающее следующим свойством: через любую точку, не лежащую внутри пятиугольника, можно провести отрезок, концы которого являются точками нашего множества, а через точки, лежащие внутри пятиугольника, такого отрезка провести нельзя.

Примечание.
1. Отрезок проходит через любую свою точку, в частности, через свой конец.
2. "Внутри" — значит строго внутри.

ВверхВниз   Решение


В прямоугольнике ABCD диагонали пересекаются в точке O, сторона AB равна 1, а угол OAB равен 60o. Найдите площадь общей части кругов, описанных около треугольников AOB и BOC.

ВверхВниз   Решение


Окружность разделена n точками на n равных частей. Сколько можно составить различных замкнутых ломаных из n равных звеньев с вершинами в этих точках?

ВверхВниз   Решение


Основание AC равнобедренного треугольника ABC является хордой окружности. Эта окружность касается прямых AB и BC в точках A и C соответственно. Известно, что $ \angle$ABC = 120o, AC = a. Найдите площадь той части треугольника, которая лежит в круге, ограниченном данной окружностью.

ВверхВниз   Решение


В равнобедренном треугольнике основание равно 48, а боковая сторона равна 30. Найдите радиусы описанной и вписанной окружностей и расстояние между их центрами.

ВверхВниз   Решение


Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?

ВверхВниз   Решение


Квадрат 10×10 клеток надо покрыть полосками 1×9 клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник 1×2 не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Функция Эйлера  φ(n)  определяется как количество чисел от 1 до n, взаимно простых с n.
Основным свойством функции Эйлера является её мультипликативность.
Для взаимно простых a и b рассмотрим таблицу

В каких столбцах этой таблицы находятся числа взаимно простые с числом b?
Сколько в каждом из этих столбцов чисел взаимно простых с a?
Докажите мультипликативность функции Эйлера, ответив на эти вопросы.

ВверхВниз   Решение


Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.

ВверхВниз   Решение



В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC . Найдите угол, образованный продолжением сторон AB и CD .

ВверхВниз   Решение


В круговом секторе OAB , центральный угол которого равен 45o , расположен прямоугольник KMPT . Сторона KM прямоугольника лежит на радиусе OA , вершина P — на дуге AB , вершина T — на радиусе OB . Сторона KT на 3 больше стороны KM . Площадь прямоугольника KMPT равна 18. Найдите радиус.

ВверхВниз   Решение


Прямая, проходящая через точки A и B окружности, рассекает её на две дуги. Длины этих дуг относятся как 1:11. В каком отношении хорда AB делит площадь круга, ограниченного данной окружностью?

ВверхВниз   Решение


Найдите все степени чисел 2, 3, 5, 6, 7, 11, 12, лежащие в промежутке от 1 до 10000 и выстройте их по порядку. Найдите среди них пары чисел, разность между которыми не превосходит 10.

ВверхВниз   Решение


Что больше: 792 или 891?

ВверхВниз   Решение


Петя нашел сумму всех нечётных делителей некоторого чётного числа (включая 1), а Вася – сумму всех чётных делителей этого же числа (включая само число). Может ли произведение двух найденных чисел быть точным квадратом?

ВверхВниз   Решение


Одна окружность описана около равностороннего треугольника ABC, а вторая касается прямых AB и AC и первой окружности. Найдите отношение радиусов окружностей.

ВверхВниз   Решение


Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?

ВверхВниз   Решение


Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 292]      



Задача 64691

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Прислать комментарий     Решение

Задача 65030

Темы:   [ Правильный (равносторонний) треугольник ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

Прислать комментарий     Решение

Задача 65031

Темы:   [ Правильный (равносторонний) треугольник ]
[ Треугольники с углами 60 и 120 ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

Прислать комментарий     Решение

Задача 65417

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10,11

Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.

Прислать комментарий     Решение

Задача 65423

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что  DE || АC,  DF || BС.
Найдите угол между прямыми и BF.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .