ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите объём правильной шестиугольной пирамиды со стороной основания a и радиусом R описанной сферы.

Вниз   Решение


Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 3 и 2, а расстояние между центрами этих окружностей равно $ \sqrt{29}$. Найдите AD.

ВверхВниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


Основанием пирамиды служит параллелограмм, соседние стороны которого равны 9 и 10, а одна из диагоналей равна 11. Противоположные боковые рёбра равны и каждое из больших рёбер равно 10 . Найдите объём пирамиды.

ВверхВниз   Решение


Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

ВверхВниз   Решение


Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
Удастся ли это ему?

ВверхВниз   Решение


В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.

ВверхВниз   Решение


У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?

ВверхВниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

ВверхВниз   Решение


На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник.

ВверхВниз   Решение


В параллелограмме ABCD сторона AD равна 6. Биссектриса угла ADC пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T,  KT = 3.  Найдите угол BAD.

ВверхВниз   Решение


Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 416]      



Задача 65242

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

Прислать комментарий     Решение

Задача 65611

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Существует ли такое натуральное n, что  

Прислать комментарий     Решение

Задача 65900

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8

Расставьте в левой части равенства     знаки арифметических операций и скобки так, чтобы равенство стало верным для всех а, отличных от нуля.

Прислать комментарий     Решение

Задача 65951

Темы:   [ Тождественные преобразования ]
[ Квадратные уравнения. Формула корней ]
Сложность: 3+
Классы: 8,9

Решите уравнение:   .

Прислать комментарий     Решение

Задача 66296

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

Решите уравнение  (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .