ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число ab – 1 принадлежало другому? Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны. Внутри выпуклого 2n-угольника взята точка P.
Через каждую вершину и точку P проведена прямая.
Докажите, что найдется сторона 2n-угольника, с которой
ни одна из проведенных прямых не имеет общих внутренних точек.
Доказать, что произведение двух последовательных натуральных чисел не является степенью никакого целого числа. Какое наименьшее число точек достаточно отметить
внутри выпуклого n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах n-угольника содержалась
хотя бы одна отмеченная точка?
200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?
В треугольнике со сторонами a, b и c проведены биссектрисы,
точки пересечения которых с противолежащими сторонами являются
вершинами второго треугольника. Докажите, что отношение площадей
этих треугольников равно
Даны три действительных числа: a, b и c. Известно, что a + b + c > 0, ab + bc + ca > 0, abc > 0. Докажите, что a > 0, b > 0 и c > 0. Двадцать городов соединены 172 авиалиниями. В трапеции ABCD AD || BC) угол ADB в два раза меньше угла ACB. Известно, что BC = AC = 5 и AD = 6. Найдите площадь трапеции. Какое наибольшее число точек можно разместить Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?
В треугольнике ABC с периметром 2p острый угол BAC
равен
Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например: (12, 3, 5) → (12, 20, 5) (или (4, 3, 5)). Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой? На русско-французской встрече не было представителей других стран. Суммарное количество денег у французов оказалось больше суммарного количества денег у россиян, и суммарное количество денег у женщин оказалось больше суммарного количества денег у мужчин.
В треугольнике ABC с периметром 2p острый угол BAC
равен
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 126]
Все точки окружности окрашены произвольным образом в два цвета.
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?
Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?
Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?
На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 126]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке