ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.
Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел. Пусть M и N — середины сторон CD и DE правильного
шестиугольника ABCDEF, P — точка пересечения отрезков AM
и BN.
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3). Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в) Делится ли 222555 + 555222 на 7? В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%. Используя результат задачи 61403, докажите неравенства:
в)
С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM. |
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 501]
Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB.
Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.
Дан правильный треугольник ABC, площадь которого равна 1, и точка P на его описанной окружности. Прямые AP, BP, CP пересекают соответственно прямые BC, CA, AB в точках A', B', C'. Найдите площадь треугольника A'B'C'.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке