ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



Задача 66241

Темы:   [ Свойства симметрий и осей симметрии ]
[ Пересекающиеся окружности ]
[ Радикальная ось ]
[ Теоремы Чевы и Менелая ]
Сложность: 4+
Классы: 9,10,11

Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.

Прислать комментарий     Решение

Задача 111728

Темы:   [ Пересекающиеся сферы ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 10,11

В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.

Прислать комментарий     Решение

Задача 111721

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Гомотетичные окружности ]
[ Композиции гомотетий ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 9,10

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .
Прислать комментарий     Решение


Задача 102816

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перпендикулярные прямые ]
[ Пересекающиеся окружности ]
Сложность: 2+
Классы: 7,8

Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)

Прислать комментарий     Решение

Задача 108115

Темы:   [ Вспомогательные равные треугольники ]
[ Общая касательная к двум окружностям ]
[ Пересекающиеся окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём  AC < ½ AB.  Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна AB.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .