ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре? Можно ли через точку в пространстве провести 7 различных прямых так, чтобы для каждых двух из них нашлась третья, которая перпендикулярна им обеим? С помощью циркуля и линейки разделите данный отрезок на n равных частей. Гена пошёл с папой в тир. Договорились, что Гена делает 5 выстрелов и за каждое попадание в цель получает право сделать ещё 2 выстрела. Всего Гена сделал 17 выстрелов. Сколько раз он попал в цель? Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0. Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному. Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость
разбита на равносторонние треугольники со стороной 1. Двое часов начали и закончили бить одновременно. Первые бьют через каждые 2 с, вторые — через каждые 3 с. Всего было сделано 13 ударов (совпавшие удары воспринимались за один). Сколько времени прошло между первым и последним ударами? Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10? Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета. Длины сторон треугольника ABC не превышают 1. |
Страница: 1 2 3 4 >> [Всего задач: 20]
Окружность радиуса 3 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 60o и 45o соответственно. Найдите площадь треугольника.
Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство
Сумма сторон AB и BC треугольника ABC равна 11, угол B равен 60°, радиус вписанной окружности равен
Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство
Длины сторон треугольника ABC не превышают 1.
Страница: 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке