ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Может ли фигура иметь более одного, но конечное число центров симметрии? Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом. Решите в целых числах уравнения:
С помощью циркуля и линейки постройте треугольник по стороне, притиволежащему углу и медиане, проведённой из вершины одного из прилежащих углов.
В прямоугольном треугольнике ABC (∠C = 90°) биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что OI ⊥ AB. Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0. Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3. В трапеции ABCD AD || BC) угол ADB в два раза меньше угла ACB. Известно, что BC = AC = 5 и AD = 6. Найдите площадь трапеции. На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F. Диагонали выпуклого четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. Известно, что диагональ BD является биссектрисой угла ABC и что BD = 25, а CD = 15. Найдите BE. Диагонали четырёхугольника ABCD, вписанного в окружность,
пересекаются в точке E. На прямой AC взята точка M, причём
∠BME = 70°, ∠ADB = 50°, Дана трапеция MNPQ с основаниями MQ и NP. Прямая, параллельная основаниям, пересекает боковую сторону MN в точке A, а боковую сторону PQ – в точке B. Отношение площадей трапеций ANPB и MABQ равно 2/7. Найдите AB, если NP = 4, MQ = 6. Диагонали четырёхугольника PQRS, вписанного в окружность, пересекаются в точке D. На прямой PR взята точка A, причём
∠SAD = 50°, ∠PQS = 70°, Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.
Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.
Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.
С помощью циркуля и линейки постройте треугольник, если дана прямая, на которой лежит его сторона, и основания биссектрис, проведённых из концов этой стороны.
С помощью циркуля и линейки постройте треугольник по точке H пересечения его высот, центру O описанной окружности и прямой l, на которой лежит одна из его сторон.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке